Газификация битумных остатков
ГАЗИФИКАЦИЯ НЕФТЯНЫХ ОСТАТКОВ
АБВГДЕЖЗИКЛМНОПРСТУФХЦЧШЩЭЮЯ ГАЗИФИКАЦИЯ НЕФТЯНЫХ ОСТАТКОВ, превращ. мазута, гудрона или тяжелых остатков от вторичных процессов нефтепереработки (крекинг, риформинг и др.) в горючий газ, осн. компонентами к-рого являются СО и Н2. Процесс осуществляется при 1230-1480 °С под давлением подаваемого окислителя - воздуха, паровоздушной (обогащенной О2) или парокислородной смеси. Горючий газ образуется при недостатке кислорода в автотермич. условиях. При этом необходимое тепло подводится за счет экзотермич. р-ций газификации с образованием оксидов углерода. Состав и выход газа, напр. при парокислородной газификации нефтяных остатков, определяются из условий равновесия конверсии СН4 и СО: СН4 + 0,5О2 - СО + 2Н2 + 34 МДж
СН4 + Н2О = СО + ЗН2 - 210 МДж СО + Н2О = СО2 + Н2 + 44 МДж Сера, содержащаяся в сырье, превращается в h3S (90%), COS (7%), CS2 (2%); ок. 1% S остается в саже. Азот нефтяных остатков переходит в N2, Nh4, NO и циан, кислород превращается в Н2О, СО2 и СО. Целевые продукты газификации нефтяных остатков могут быть самыми разными, но во всех случаях технол. схема включает след. процессы: нагрев сырья и смешение его с окислителем; собственно газификацию (сгорание нефтяных остатков) в реакторе - цилиндрич. аппарате, футерованном высокоглиноземистым огнеупорным материалом; охлаждение газа в котле-утилизаторе (газоохладителе); очистку от сажи и др. примесей. Наиб. распространена в пром-сти газификация нефтяных остатков парокислородной смесью под давл. 6-10 МПа с целью получения синтез-газа. Мощность газификационных установок-до 800 т перерабатываемых нефтяных остатков в год. Образовавшийся синтез-газ очищают от мех. примесей (сажа м. б. возвращена в реактор) и сернистых соединений. Состав синтез-газа (% по объему): 43-47 СО, 42-45 Н2, 4-6 СО2, 2-5 N2. Расход (на 1 кг сырья): О2 0,75-0,85 м3, пара 0,4-0,5 кг. Выход газа 2,8-3,0 м3 на 1 кг нефтяных остатков. Для получения техн. Н2 синтез-газ подвергают каталитич. конверсии с водяным паром. Образовавшийся газ тщательно очищают от оксидов углерода. Состав газа (% по объему): 97,0-97,5 Н2, 1,8-2,0 СН4, 0,7-0,8 N2, до 0,02 СО, до 0,005 СО2. Расход сырья 4,2-4,5 т на 1 т Н2. При произ-ве газа для синтеза Nh4 необходимое соотношение N2: Н2 достигается промывкой газа жидким N2 с одновременной очисткой от сернистых соед. СО и СО2 или добавлением N2 к техн. Н2.
При газификация нефтяных остатков воздухом или обогащенной О2 паровоздушной смесью, расход к-рых соотв. составляет 4,8-5,0 и 2,0-2,2 м3 на 1 кг сырья, образуется газ, используемый в металлургии (т. наз. восстановительный газ), а после очистки от сажи, сернистых соед. и частично от СО2 - как топливо (отопительный, или энергетический, газ) с теплотой сгорания ок. 8000 кДж/м3. Примерный состав газа (% по объему): воздушной газификации - 21-22 СО, 15-18 Н2, 2,5-4,0 СО2, 56-59 N2; паровоздушной газификации - 33-36 СО, 29-31 Н2, 3,0-4,5 СО2, 30-31 N2. === Исп. литература для статьи «ГАЗИФИКАЦИЯ НЕФТЯНЫХ ОСТАТКОВ»: Рябцев И. И., Волков А. А^ Производство газа из жидких топлив для синтеза аммиака и спиртов, М., 1968; Производство водорода, синтез-газа и энергетического газа, М., 1981. Н.А. Кириченко. Страница «ГАЗИФИКАЦИЯ НЕФТЯНЫХ ОСТАТКОВ» подготовлена по материалам химической энциклопедии. АБВГДЕЖЗИКЛМНОПРСТУФХЦЧШЩЭЮЯ Еще по теме: - ГАЗИФИКАЦИЯ НЕФТЯНЫХ ОСТАТКОВ - химическая энциклопедия
| ___ | www.xumuk.ru
Техническая библиотека
Значительная часть добываемых природных материалов при последующей переработке попадает в отходы производства.
Утилизация отходов и побочных продуктов производства обеспечивает прямую экономию затрат на прирост первичных сырьевых ресурсов, расширение возможности экспорта (уменьшение импорта) природного сырья.
Особенностью современной нефтеперерабатывающей промышленности является тенденция к углублению переработки нефти, что объясняется ограниченностью ее запасов, а также ужесточением экологических требований к нефтепродуктам.
Увеличение глубины переработки нефти с целью получения дополнительного количества светлых фракций по сравнению с потенциалом достигается введением в схему нефтеперерабатывающего завода вторичных процессов переработки тяжелых нефтяных фракций (термокрекинг, каталитический крекинг, гидрокрекинг и др.).
Однако сохраняется проблема утилизации наиболее тяжелых продуктов (гудрон, тяжелые каталитические газойли и тд), остающихся после первичных и вторичных процессов. Традиционная их переработка в котельное топливо стремительно теряет свою актуальность из-за повсеместной газификации энергетических установок.
Другой относительно крупный потребитель тяжелых нефтяных остатков - битумное производство - характеризуется сезонным режимом работы, что также не позволяет в достаточной мере решить обозначенную проблему.
В связи с вышесказанным увеличение эффективности переработки тяжелых нефтяных остатков в светлые нефтепродукты и сырье основного органического и нефтехимического синтеза является весьма актуальной задачей для стран-производителей и потребителей нефтепродуктов.
Основные направления и особенности переработки тяжелых нефтяных остатков
Современный НПЗ представляет собой сложную химико-технологическую систему, замкнутую по потокам массы и энергии.
Помимо установок первичной переработки нефти (атмосферная, вакуумная, атмосферно-вакуумная ) в состав НПЗ входят установки, реализующие процессы вторичной переработки прямогонных нефтепродуктов.
Среди вторичных процессов выделяют:
- процессы, углубляющие переработку нефти,
- процессы, обеспечивающие или повышающие качество нефтепродуктов.
К 1й группе относятся гидрокрекинг, каталитический крекинг, термокрекинг и др, позволяющие за счет деструктивного преобразования тяжелого сырья получать более легкие углеводородные фракции, а также процессы производства нефтебитумов, масел, парафинов и тп, сокращающие выработку топочных мазутов.
2ю группу составляют процессы изомеризации и каталитического риформинга бензиновых фракций, гидроочистки моторных топлив, процессы алкилирования, производства оксигенатов, гидрооблагораживания термогазойлей и котельных топлив и др, определяющие качество товарных продуктов. Некоторые процессы, например каталитический крекинг или гидрокрекинг, наряду с углублением переработки сырья обеспечивают и высокое качество продукции, в данном случае бензинов или дизтоплив.
Доля вторичных процессов в технологической структуре НПЗ (определяемая как отношение суммарной мощности этих процессов к количеству перерабатываемой нефти) является важным интегральным показателем, характеризующим как достигнутую глубину переработки сырья, так и качество нефтепродуктов, т. е. отражает уровень развития предприятия. В зависимости от ассортимента выпускаемой продукции, который определяется набором технологических установок, находящихся в эксплуатации, различают нефтеперерабатывающие предприятия топливного, топливно-масляного, топливно-нефтехимического и топливно-масляно-нефтехимического профиля.
Тяжелые нефтяные остатки
Уровень развития предприятия и его товарная специализация напрямую определяют номенклатуру, качество и количество отходов нефтепереработки.
Значительная доля всей массы отходов приходится на так называемые тяжелые нефтяные остатки - это, как правило, нефтепродукты, которые не находят более квалифицированного применения, чем использование в качестве компонента котельного топлива либо сырья для его производства.
В зависимости от оснащенности НПЗ вторичными процессами в качестве тяжелых остатков могут выступать мазут (остаточная фракция атмосферной перегонки нефти), гудрон (кубовый продукт вакуумной перегонки мазута), тяжелый газойль каткрекинга. При наличии в структуре завода масляного производства к нефтяным остаткам могут быть отнесены также асфальт, образующийся при деасфальтизации гудрона, и экстракты селективной очистки масляных фракций.
В случае если НПЗ не располагает процессами для специализированной переработки указанных тяжелых продуктов, они утилизируются как компоненты котельного топлива. Наличие в номенклатуре товарной продукции топочного мазута, полностью или частично состоящего из остатка атмосферной перегонки нефти, свидетельствует о низком уровне развития предприятия, слабом использовании потенциала перерабатываемого сырья.
Считается, что прямогонный мазут, содержащий ценные газойлевые фракции, гораздо выгоднее перерабатывать на самом предприятии с получением дорогостоящих моторных топлив и смазочных масел. Такой подход особенно актуален в связи с тем, что доля тяжелых нефтей в мировой нефтепереработке постоянно возрастает. Задача утилизации тяжелых нефтепродуктов имеет несколько решений (см. рисунок).
Гудрон, асфальт, экстракты очистки масел являются хорошим сырьем для производства окисленных и компаундированных битумов, использующихся в строительстве дорог, зданий и сооружений. Поэтому большинство НПЗ имеют в своем составе битумные установки. Однако сезонный спрос на битумы (в странах с устойчивым снежным покровом в зимний период), а также образование гудронов в количествах, превышающих потребность в них как в сырье для битумного производства, не позволяют решить проблему утилизации нефтяных остатков только этим путем. Поэтому параллельно организуют их переработку термодеструктивными методами.
Существуют 2 подхода к проведению процесса термодеструкции тяжелого нефтяного сырья:
- глубокое разложение с максимальным выходом газов и дистиллятных фракций и минимальным выходом крекинг-остатка; в предельном случае это процессы коксования, максимально повышающие глубину переработки нефти;
- неглубокое разложение с целью получения котельного топлива пониженной вязкости без применения дистиллятных разбавителей; этим процессом является висбрекинг, который частично способствует углублению переработки нефти.
Процессы коксования
Из всех разновидностей процесса коксования наибольшее распространение в промышленности получило замедленное коксование в необогреваемых камерах. С технологической точки зрения это наиболее простой и дешевый путь практически безостаточной переработки тяжелого сырья. Помимо газа, дистиллятных фракций и тяжелого газойля, являющихся ценным сырьем производства моторных топлив, продуктом данного процесса является крупнокусковой кокс, который в зависимости от качества может находить различное применение.
Высококачественный малосернистый, малозольный игольчатый кокс, получаемый из смол пиролиза, каталитических газойлей и некоторых крекинг-остатков, находит применение в металлургии как восстановитель и материал электродов. Основная же масса кокса - так называемый губчатый кокс, вырабатываемый из атмосферных и вакуумных остатков с различными характеристиками, тяжелых нефтей, сланцевых смол и тд, - не подходит для этих целей. Поэтому строительство и эксплуатация установок замедленного коксования (УЗК) экономически целесообразна, если налажена система сбыта кокса в качестве топлива для цементных печей, ТЭЦ, как это сделано, например, в США.
Висбрекинг
Висбрекинг, как способ переработки тяжелых нефтяных остатков, распространен в европейских странах, где традиционно применение топочных мазутов в теплоэнергетике. Типичное сырье висбрекинга - вакуумные гудроны - подвергаются однократному термическому крекингу в относительно мягких условиях. Такой режим процесса способствует максимальному выходу (до 93% на сырье) так называемого висбрекинг-мазута, в котором присутствуют все жидкие фракции, кроме бензиновых.
Побочными легкими продуктами являются газы и бензиновые фракции, но их выход не превышает 8% мас.
Висбрекинг-мазут реализуется как жидкое котельное топливо, однако в последнее время наметилась тенденция к переработке его на самой установке висбрекинга с целью выделения вакуумного газойля - ценного сырья для процессов гидрокрекинга и каткрекинга. Так, на НПЗ предусмотрен ввод в эксплуатацию вакуумного блока на установке висбрекинга, что также должно положительно повлиять и на технико- экономические показатели работы УЗК, расположенной следующей в технологической цепочке переработки нефтяных остатков.
В этой связи становятся актуальными разработки, направленные на увеличение выхода дистиллятных фракций в процессе висбрекинга.
Процессы гидрогенизационной переработки нефтяных остатков
В настоящее время в мировой практике нефтедобычи все более проявляется тенденция утяжеления добываемых нефтей и увеличения содержания в них сернистых соединений при снижении потребности в котельных топливах. Поскольку выбор технологий переработки нефти и вторичного сырья определяется преимущественно требованиями к качеству нефтепродуктов и законодательными актами по охране окружающей среды, все более важную роль в развитии НПЗ играют процессы гидрогенизационной переработки нефтяных остатков и тяжелых газойлей.
Поставленные перед необходимостью облагораживать нефтяные остатки и тяжелые газойли нефтяные мейджоры переходят от технологии термодеструкции на технологию гидропереработки остатков, в особенности на вновь строящихся НПЗ и в регионах, где затруднен сбыт нефтяного кокса.
Наибольшее распространение в мировой практике нашли следующие процессы гидрореформулирования нефтяных остаточных продуктов:
1. Гидроочистки RCD Unionfining (UOP LLC), RDS/VRDS/OCR (Chevron Lummus Global LLC), Hyvahl (Axens). Процессы предназначены для уменьшения содержания серы, азота, асфальтенов, соединений металлов и снижения коксуемости остаточного сырья с целью получения качественного котельного топлива или для дальнейшей переработки на гидрокрекинге, коксовании, каталитическом крекинге.
2. Гидровисбрекинг-акваконверсия (Intevep SA и UOP) Технология позволяет получать водород из воды в условиях висбрекинга за счет ввода в сырье вместе с водой (паром) композиции из 2х катализаторов на основе неблагородных металлов. В процессе акваконверсии обеспечивается значительно большее снижение вязкости наиболее тяжелых компонентов котельных топлив при более высокой конверсии сырья.
3. Гидрокрекинги (НС)3 (Hydrocarbon Technologies), LC-Fining (Chevron Lummus Global LLC), H-Oil (IFP). Предназначены для каталитического гидрокрекинга и обессеривания остаточного сырья в реакторах со взвешенным катализатором с получением высококачественных дистиллятов и облагороженного малосернистого котельного топлива. Несмотря на очевидные достоинства гидрогенизационной переработки нефтяных остатков, широкое ее внедрение сдерживается сложностью и громоздкостью реакторных устройств, а также сложностью управления технологическим процессом, так как это не способствует его надежности. Кроме того, чрезвычайно велико потребление молекулярного водорода, что обусловливает необходимость параллельного ввода в эксплуатацию дополнительных мощностей по его производству. Это негативно сказывается на экономике процессов и ставит проблему утилизации оксидов углерода.
Газификация нефтяных остатков
Упомянутые проблемы гидрогенизационных процессов сохраняют актуальность термодеструктивных процессов и выводят на передний план такой способ утилизации тяжелого нефтяного сырья, как газификация. Газификация нефтяных остатков - это способ получения синтез-газа, применяемого для производства аммиака, метанола и оксоспиртов. Типичными представителями газификационных технологий являются SGP (Shell Gasification Process), GE (Texaco Gasification Process).
Самые тяжелые остаточные углеводородные фракции с высоким содержанием серы и металлов могут быть превращены в чистый синтез-газ и ценные оксиды металлов. Образующиеся при этом соединения серы могут быть легко выделены обычными способами и превращены в элементарную серу или серную кислоту.
В последнее время газификацию используют также для восполнения дефицита водорода в других процессах нефтепереработки. Кроме того, возможно применение газификации для утилизации остатков деасфальтизации, висбрекинга и тп

Рисунок 1 - Альтернативные схемы переработки тяжелых нефтяных остатков
Проводя анализ существующих способов утилизации остаточных нефтепродуктов, нельзя не упомянуть разработки по использованию гудронов, асфальтитов в качестве связующих, пластификаторов, сырья для получения углеродных адсорбентов, ионитов и каталитических систем на их основе.
Экономически более выгодной на сегодняшний день считается переработка тяжелых нефтяных остатков с максимальным возвратом получаемых продуктов в производство моторных топлив и масел.
В настоящее время в мировой нефтепереработке нет недостатка в технических решениях по переработке тяжелых высокосернистых нефтяных остатков, однако большинство из этих решений требует значительных капитальных вложений.
Поэтому усилия многих исследователей сегодня направлены на поиск методов, позволяющих повысить эффективность процессов, уже находящихся в широкой эксплуатации, таких как коксование и висбрекинг.
Для интенсификации процессов термодеструкции нефтяное сырье подвергают активации, используя арсенал физических и химических методов.
Так, использование различных химических добавок позволяет учитывать особенности сырья с точки зрения межмолекулярных взаимодействий и тем самым влиять на скорость и направленность химических превращений в системе.
Наряду с развитием гидрогенизационных способов переработки тяжелых нефтяных остатков в современной нефтепереработке сохраняют актуальность и термодеструктивные процессы: термокрекинг, висбрекинг, коксование.
Использование в таких процессах добавок химических соединений, выполняющих функции окислителей/восстановителей, инициаторов/ингибиторов свободно-радикальных процессов, компенсаторов парамагнитных центров, регуляторов фазовых переходов в дисперсной системе и тп, позволяет оказывать существенное влияние на режим и результаты термодеструктивной переработки нефтяного сырья, приводя к увеличению выхода светлых дистиллятов и вакуумных газойлей и снижению коксообразования.
При этом для внедрения удачных промотирующих композиций в промышленность не требуется существенного изменения технологической схемы и конструкции оборудования. Поэтому исследования, направленные на разработку эффективных способов химической активации процессов переработки тяжелых нефтяных остатков, являются весьма перспективными.
neftegaz.ru
Большая Энциклопедия Нефти и Газа
Cтраница 1
Направленная газификация тяжелых нефтяных остатков с целью получения газов с высоким содержанием непредельных углеводородов ( этилена, пропилена) начала развиваться с 1950 - 1953 гг. в США, Англии и Франции и с 1954 - 1955 гг. особенно быстрыми темпами в ФРГ. [1]
Переработка пиролизом или газификацией тяжелых нефтяных остатков для производства этилена в настоящее время еще не может быть рекомендована. В первую очередь должен быть осуществлен процесс пиролиза дистиллятных фракций. [2]
Для завершения исследований циклического процесса газификации тяжелых нефтяных остатков пришлось преодолеть большие затруднения, заключавшиеся в подборе подходящего катализатора. Применявшийся вначале никелевый катализатор оказался очень чувствительным к соединениям серы, поэтому он быстро терял активность и нуждался в замене. Для повышения устойчивости катализатора к отравляющему действию сернистых соединений необходимо было специально исследовать и разработать метод приготовления носителя, способного фиксировать, переносить и десор-бировать сернистые соединения, содержащиеся в исходных нефтепродуктах. Чтобы активность катализатора не снижалась вследствие спекания и оплавления поверхности его зерен или кусков, носитель должен быть тугоплавким. В данном случае носитель должен обладать и способностью аккумулировать тепло, необходимое для протекания на катализаторе эндотермических реакций. [3]
Комплексная переработка нефти с учетом газификации тяжелых нефтяных остатков обеспечивает получение 34 % жидких продуктов и 60 % газа от исходного сырья с содержанием в последнем свыше 16 % этилена, 12 % этана, свыше 26 % пропан-пропиленовой фракции, 9 5 % бутиленов, 3 6 % бутана и почти 15 % пентановой фракции. За рубежом имеются промышленные установки, которые при переработке сырой нефти позволяют получать олефины и другие продукты. [4]
Технико-экономическое сравнение производства водорода методами парокислсродной газификации тяжелых нефтяных остатков по второму варианту и паровой конверсии нафты, выполненное фирмой ЦБЭ 12, показало, что эксплуатационные расходы на установке паровой конверсии на 14 4 выше. [5]
Как следует из сказанного выше, газификация тяжелых нефтяных остатков открывает обширное поло для научных исследований. [6]
При производстве водорода и синтез-газа процессом факельной газификации тяжелых нефтяных остатков образуется побочный продукт - сажа. Количество ее составляет от I до 4 - мае. Газ очищается от сажи промывной водой. При этом получается сажеводяная суспензия. [7]
Из изложенного видно, что целесообразность использования процесса парокислсродной газификации тяжелых нефтяных остатков для производства водорода на НПЗ основана на экономике процесса и перспективах развития нефтепереработки. [8]
На рис. 60 показана форсунка ГИАП, предназначенная для газификации тяжелых нефтяных остатков. Завихренные потоки, выходящие из каждого элемента, встречаются далее друг с другом и образуют единый короткий факел с плоским фронтом горения. [9]
Очевидно, процесс, состоящий из двух отдельных стадий: газификации тяжелых нефтяных остатков и последующего превращения полученного газа, требует больших капиталовложений и эксплуатационных расходов, чем процессы безостаточной газификации или получения газа, заменяющего коксовый, осуществляемые на основе использования тяжелых нефтяных остатков только в одну стадию. [10]
Рассмотрена эффективность схемы энергоснабжения НПЗ, основанного на использовании процесса газификации тяжелых нефтяных остатков воздухом под давлением. [11]
Из перечисленных научно-исследовательских работ рассматриваемой группы следует особо остановиться на теме газификации тяжелых нефтяных остатков. [12]
В ВНИИНП разработана схема энергоснабжения НПЗ, основанвная на использовании процесса газификации тяжелых нефтяных остатков под давлением. Сажа ( 2 - 3 от сырья), образующаяся в процессе может быть возвращена в реактор и полностью утилизирована; 92 - 93 серы топлива превращается в сероводород, остальная часть - сероорганические соединения. [13]
Циклический процесс ONIA-GEGI позволяет производить в присутствии катализаторов и с участием пара газификацию тяжелых нефтяных остатков, а также конвертировать метан или газы переработки нефти и получать газы различной теплотворности: богатый газ для замены природного, газ, заменяющий коксовый, газ для химического синтеза, могущий быть переработанным в водород для производства аммиака. В качестве катализатора используется никель на соответствующем носителе. [14]
Для сравнения приведены также данные по качественной оценке генераторного газа, полученного от газификации тяжелых нефтяных остатков воздухом. [15]
Страницы: 1 2
www.ngpedia.ru
Лекция 18 Газификация
Лекция № 18 – Газификация
На любом НПЗ при углубленной переработке нефти образуются в больших количествах (около 15-20 % от нефти) твердые при комнатной температуре остатки, такие, как асфальты деасфальтизации и гудроны глубоковакуумной перегонки, которые до настоящего времени не находят достаточно квалифицированного применения. Применение их в качестве сырья для получения нетопливных нефтепродуктов, таких, как битум, пек, связующее и другие углеродистые материалы, осуществляется в значительно меньших объемах, чем количество образующихся твердых нефтяных остатков.
Дальнейшая безостаточная переработка нефти может быть осуществлена лишь химической переработкой твердых нефтяных остатков. Для этих целей применимы давно используемые и отработанные технологические процессы переработки твердых горючих ископаемых (углей, сланцев, антрацитов). Из многообразия используемых в углепереработке способов применительно к нефтепереработке более предпочтительны и эффективны процессы газификации. При этом процессы газификации используют преимущественно для производства водорода, потребность в котором резко возрастает по мере повышения глубины переработки нефти.
Газификацией называют высокотемпературный некаталитический процесс взаимодействия органической массы твердых или жидких горючих ископаемых с окислителями с получением горючих газов (СО, Н2, СН4). В качестве окислителей - газифицирующих агентов - используют кислород, воздух, водяной пар, диоксид углерода и их смеси.
Впервые промышленная реализация газификации твердых топлив была осуществлена в 1835 г. в Великобритании. К середине XX в. газогенераторный процесс получил широкое развитие в большинстве промышленных развитых стран мира. В последующие годы «нефтяного бума» в мире производство продуктов газификации твердых горючих ископаемых из-за утраты конкурентоспособности повсеместно было прекращено. Однако в последние годы в связи с сокращением ресурсов нефтяного и газового сырья синтетические топлива начинают вновь рассматриваться как одна из существенных составляющих топливно-энергетического баланса. В 90-х гг. технология газификации твердых горючих ископаемых «проникла» в нефтепереработку.
Состав генераторного газа определяется видом применяемого дутья (т.е. составом газифицируещего агента). По виду дутья различают:
1) процессы паровоздушной (или парокислородовоздушной) газификации, в которых получают азотсодержащий генераторный газ, применяемый как энергетическое топливо или технологический газ для синтеза аммиака;
2) процессы парокислородной газификации, в которых получают смесь оксида углерода и водорода с небольшим количеством метана, используемых как химическое сырье в производстве метанола, синтетических жидких топлив, спиртов и т.п., или получают только водородсодержащий газ после полной конверсии оксида углерода и очистки от СО2.
Процессы газификации можно также классифицировать по следующим признакам:
По теплоте сгорания получаемых газов:
- получение газов с низкой теплотой сгорания (4-7) кДж/м3;
- получение газов со средней теплотой сгорания (7-19) кДж/м3;
- получение газов с высокой теплотой сгорания (31-40) кДж/м3.
2) По назначению газов
- для энергетических целей (непосредственно сжигания);
- для технологических целей (производство водорода, технического углерода, другие различные синтезы).
3) По давлению газификации
- при атмосферном (0,10-0,13 МПа)
- при среднем давлении до 2-3 МПа
- при высоком давлении свыше 3 МПа
При взаимодействии углерода топлива (твердого нефтяного остатка) с газифицирующими агентами (О2, Н2О, СО2) при высокой температуре протекают следующие гетерофазные реакции:
1. С + О2 = СО2 + 394,4 МДж/кмоль углерода;
2. 2С + О2 = 2СО +218,8 МДж/кмоль углерода;
3. С + Н2О = СО + Н2 - 132,6 МДж/кмоль углерода;
4. С + 2 Н2О = СО2 +2 Н2 - 89,5 МДж/кмоль углерода;
5. С + СО2 = 2 СО - 175,8 МДж/кмоль углерода;
6. С + 2Н2 = СН4 + 87,4 МДж/кмоль углерода;
7. СО + Н2О = СО2 + Н2 + 42,4 МДж/кмоль.
Конверсия метана с водяным паром протекает по следующим реакциям:
СН4 + Н2О ↔ СО + 3Н2,
СН4 + 2Н2О ↔ СО2 + 4Н2.
Образующийся диоксид углерода реагирует с метаном по следующей реакции:
СН4 + СО2 ↔ 2СО + 2Н2.
Сочетание всех этих реакций и определяет состав образующегося генераторного газа. Газифицирующий агент - кислород - подается в процессе в количестве, достаточном для поддержания требуемой температуры газификации (1300-1600 °С при жидком золоудалении и 900-1000 °С при твердом (сухом) золоудалении). Высокий выход целевых компонентов генераторного газа (СО и Н2) обеспечивается главным образом за счет реакций (3, 4, 5, 7) с участием преимущественно водяного пара. Термодинамический анализ показывает, что равновесие всех реакций, протекающих с участием кислорода, практически полностью смещено вправо. Следовательно, в равновесной газовой смеси не может быть свободного кислорода. Поскольку для равновесия эндотермических реакций благоприятна высокая температура, то с повышением температуры возрастает выход целевых компонентов в генераторном газе по реакциям (3,4,5). Роль реакций метанообразования в некаталитических процессах газификации очень мала.
Одним из наиболее эффективных современных способов газификации твердых топлив и нефтяных остатков является метод Копперса-Тотцека, заключающийся в проведении процесса в потоке пылевидного топлива. Схема газогенератора этого типа приведена на рисунке. Он представляет собой горизонтальную реакционную камеру, футерованную изнутри термостойким материалом, охлаждаемую снаружи водой с получением пара низкого давления. Форсунки («горелочные головки») для подачи исходных веществ размещены в расположенных друг против друга реакционных камерах. Пылевидный уголь (с размером частиц ~ 0,1 мм) потоком азота подается в расходные бункера 1, откуда шнеком направляется в форсунки 3, захватывается потоком кислорода и водяного пара и распыляется в камеру 2. Зола отводится в жидком виде. Поэтому температура в камере 2 составляет 1500-1600 °С. В реакционной камере достигается высокая степень превращения органической части угля с образованием смеси газов СО2, СО, Н2, Н2О и Н2S с составом, близким к равновесному. При охлаждении генераторного газа не выделяются органические вещества, поэтому упрощается очистка газа и воды. Зола в жидком виде выводится из нижней части реакционной камеры, охлаждается и удаляется в виде гранулированного шлака.
Газ охлаждается в котле-утилизаторе, при этом образуется пар давлением до 10 МПа. Газ далее охлаждается, промывается циркулирующей водой для удаления частиц пыли и направляется на следующие стадии очистки и переработки.

1 - бункера-дозаторы; 2 - камера газогенератора; 3 - форсунки; 4 - узел отвода жидкого шлака и его грануляции
Развитием метода Копперс-Тотцека являются газогенераторы пылевидного угля по методу Тексако. Принципиальная его особенность заключается в проведении газификации под давлением. Газогенераторы системы Тексако приняты в качестве основного реакционного аппарата в широко распространенных в последние годы в процессах газификации твердых нефтяных остатков «Покс» с получением водорода для гидрогенизационных процессов глубокой переработки нефти.
При каталитической паровой конверсии метана катализатор (никелевый) находится внутри трубок печи. Туда же подаётся смесь метана и водяного пара. Реакция эндотермическая и температура поддерживается сжиганием топлива в печи.
- Температура процесса 800-900 °С;
- Давление процесса 2,0-2,5 МПа.
- Соотношение водяной пар:метан = 2-3 : 1.

Рисунок – Реактор паровой конверсии метана
Области применения продуктов газификации твердого топлива и ТНО и конверсии природного газа:
- высококалорийное топливо;
- производство метанола (СО и водород);
- производство синтетического жидкого топлива (СО и водород);
- производство карбамида (азот, водород и СО2);
- производство бутиловых спиртов (СО, водород и пропилен) и т.д.
studfiles.net