Снижение расходов производство цемента


Пути экономии строительных материалов

Министерство образования Украины

Киевский государственный университет строительства и архитектуры

кафедра строительных материалов

на тему: ’’Пути экономии строительных материалов”

В этом реферате приведены основные направления снижения энергетических

затрат при производстве стали, цемента, сборного железобетона. Также

описаны: основные источники потерь цемента при его производстве,

транспортировке, применении; эффективные направления снижения расхода

металла в железобетонных конструкциях; проблемы экономного расходования

При изготовлении большинства строительных материалов основная часть затрат

падает на сырье и топливо. На производство строительных материалов и

конструкций ежегодно расходуется около 50 млн. т условного топлива. В табл.

1 приведен расход условного топлива на производство основных видов

неметаллических строительных материалов и изделий. Наибольшая доля затрат

на топливо характерна для себестоимости металлов, цемента, пористых

заполнителей, керамических стеновых материалов, стекла.

Экономия топлива достигается интенсификацией тепловых процессов и

совершенствованием тепловых агрегатов, снижением влажности сырьевых

материалов, применением вторичного сырья, промышленных отходов и других

технологических приемов. При производстве стали наиболее эффективной в

тепловом отношении является кислородно-конвертерная плавка, основанная на

продувке жидкого чугуна кислородом. Коэффициент использования теплоты в

кислородных конверторах достигает 70%, что намного выше, чем в других

сталеплавильных агрегатах. Применение кислорода позволяет уменьшить на 5—10

% расход топлива и при мартеновском способе. Более полно используется

теплота отходящих газов в двухванных мартеновских печах. Прогрессивным

способом является получение стали прямым восстановлением из руд, минуя

доменный процесс. При этом способе отпадают затраты на коксохимическое

производство, являющееся основным при доменном процессе.

В цементной промышленности снижение затрат топлива достигается обжигом

клинкера по сухому способу, получением многокомпонентных цементов,

применением .минерализаторов при обжиге клинкера и различных типов

теплообменных устройств, обезвоживанием шлама, низкотемпературной

технологией, полной или частичной заменой глины такими промышленными

отходами, как золы, шлаки и др. Один из главных резервов снижения расхода

топлива в производстве цемента — уменьшение влажности шлама. Каждый процент

снижения влажности шлама позволяет уменьшить удельный расход топлива на

обжиг клинкера в среднем на 117—146 кДж/кг, т. е. на 1,7—2 %. Удельный

расход теплоты на обжиг при сухом способе составляет 2900—3750 кДж/кг

клинкера, а при мокром в 2—3 раза больше. При введении в сырьевой шлам

доменных шлаков или зол ТЭС расход топлива снижается на 15—18%. При выпуске

шлакопортланд-цемента экономия топлива дополнительно составляет в среднем

30—40 % по сравнению с чистоклинкерным портландцементом.

В нашей стране разработана технология низкотемпературного синтеза

клинкера с использованием в качестве каталитической среды хлористого

кальция. Эта технология обеспечивает снижение затрат теплоты на обжиг и

помол клинкера на 35—40 % и такое же повышение производительности печей.

К энергоемким отраслям промышленности строительных материалов относится и

производство сборного железобетона. На 1 м^3 сборного железобетона в

среднем расходуется более 90 кг условного топлива. До 70 % теплоты идет на

тепловую обработку изделий. Тепловую эффективность производства сборного

железобетона можно существенно повысить, снизив тепловые потери, связанные

с неудовлетворительным состоянием пропарочных камер, тепловых сетей,

запорной арматуры и средств контроля расхода пара.

Непроизводительные потери теплоты уменьшаются при повышении теплового

сопротивления пропарочных камер с помощью различных теплоизоляционных

материалов и легких бетонов. Более экономичными по сравнению с наиболее

распространенными явными пропарочными камерами являются вертикальные,

туннельные, щелевые, малонанорные камеры. В последних, например, расход

пара на 30—40 % ниже, чем в ямных.

Наряду с уменьшением тепловых потерь важнейшее значение для экономии

топливно-энергетических ресурсов в производстве сборного железобетона

приобретает развитие энергосберегающих технологий: применение высокопрочных

и быстротвердеющих цемситов, введение химических добавок, снижение

температуры и продолжительности нагрева, нагрев бетона электричеством и в

среде продуктов сгорания природного газа и др. Ускорению тепловой обработки

способствуют способы формования, обеспечивающие применение более жестких

смесей и повышение плотности бетона, использование горячих смесей,

совмещение интенсивных механических и тепловых воздействий на бетон.

Ускорение тепловой обработки достигается при изготовлении конструкций из

высокопрочных бетонов. Длительность тепловой обработки бетонов марок М

600—М 800 можно снизить с 13 до 9—10 ч без перерасхода цемента. Эффективной

технологией ускоренного твердения является бескамерный способ, основанный

на создании искусственного массива бетона пакетированием. Перспективны

способы тепловой обработки бетона в электромагнитном поле и с применением

инфракрасных лучей. В южных районах страны удельные затраты теплоты на

ускорение твердения бетона можно существенно снизить, используя солнечную

В производстве керамических стеновых материалов и пористых заполнителей

эффективным направлением экономии кондиционного топлива является применение

топливосодержащих отходов промышленности. Так, применение в качестве

топливосодержащей добавки отходов углеобогащения позволяет экономить при

получении стеновых керамических изделий до 30 % топлива, исключает

необходимость введения в шихту каменного угля.

Наряду с экономией топлива снижение материалоемкости строительных

изделий в большой мере достигается рациональным использованием исходных

компонентов и в особенности таких, как цемент, сталь, древесина, асбест и

др. Экономия этих материалов достигается на всех этапах их производства и

Основным источником потерь цемента при его производстве является вынос в

результате несовершенства пылеулавливающих устройств помольных агрегатов.

Перевозка цемента должна осуществляться в специализированных транспортных

средствах. При транспортировании в цементовозах потери цемента при

погрузочно-разгрузочных работах в среднем в 10 раз меньше, чем в крытых

вагонах, в 40 раз меньше, чем в открытом подвижном составе. Одна из причин

перерасхода — смешивание используемых цементов различных марок и видов при

отсутствии достаточного количества емкостей для их хранения. В этих случаях

вынужденно применяют расходные нормы для худшего из смешанных цементов, что

приводит к их перерасходу на 6—8 %. Важное значение имеет применение

кондиционных заполнителей бетона. Каждый процент загрязненности щебня

равнозначен дополнительному расходу примерно 1 % цемента. В табл.2

приведено возможное снижение расхода цемента при обогащении мелкозернистых

песков укрупняющими добавками.

Нерационально применение цемента марки 400 для изготовления бетонов марок

М 100 и М 150, а также растворов марок 50 и 75. В этих случаях значительное

снижение расхода цемента можно достичь введением в бетонные и растворные

смеси минеральных дисперсных добавок, например, золы-уноса ТЭЦ.

Большое значение для экономного использования цемента имеет обоснованный

выбор области наиболее эффективного применения цемента с учетом его

минералогического состава и физико-механических характеристик. Например,

для сборного железобетона, подвергаемого тепловой обработке, наиболее

пригодны цементы с содержанием СзА до 8%. Расход цемента увеличивается по

мере роста его нормальной густоты (табл.3), поэтому желательно его

применение с минимальной нормальной густотой.

На предприятиях по производству бетона и сборного железобетона

значительная экономия цемента может быть достигнута при оптимизации

составов бетонов, применением смесей повышенной жесткости с уплотнением на

резонансных и ударных виброплощадках, предварительным разогревом бетонных

смесей и выдерживанием изделий после тепловой обработки, увеличением

продолжительности тепловой обработки, расширением объема изготовления

конструкций с минусовыми допусками, совершенствованием технологического

оборудования и контрольно-измерительной аппаратуры.

Одно из наиболее перспективных направлений снижения расхода цемента —

применение химических добавок. Такие традиционные химические добавки, как

СДБ, позволяют снижать расход цемента на 5—10%. Возможное снижение расхода

цемента при применении новейших добавок суперпластификаторов составляет 15-

25'%.Дополнительный источник экономии цемента при высоком качестве бетона —

применение статистического контроля прочности. Назначение требуемой

прочности бетона с учетом его однородности обеспечивает при повышенной

культуре производства снижение расхода цемента на 5—10 %.

Экономия металла — важнейшая народнохозяйственная задача. В настоящее

время в строительстве ежегодно используется 31—33 млн. т. черных металлов,

из которых 12—13 млн. т. расходуется на арматуру для железобетонных

конструкций, около 8 млн. т. на фасонный и листовой прокат для изготовления

металлоконструкций и опалубочных форм и 11—12 млн. т. на трубы.

Самое эффективное направление снижения расхода металла в

железобетоне—применение для арматуры вы-сокопрочной стали. Арматурная сталь

разных классов и видов является в известных пределах взаимозаменяемой.

Количество стали любого класса (Т) может быть выражено в условно

эквивалентном по прочности приведенном количестве стали класса А - I (Т')

[pic] (А)

где Кпр—коэффициент приведения стали данного класса к стали

В табл.4 приведены значения коэффициента приведения и экономии металла

при использовании арматурной стали различных классов.

Значительный резерв по экономии металла обеспечивается при изготовлении

напряженной арматуры из высоко прочной проволоки и канатов. Экономия

металла достигается также при более точных расчетах конструкций в

соответствии с действительными условиями их работы под нагрузкой,

приближением армирования к требованиям расчета, оптимизацией конструктивных

При изготовлении арматурных изделий для сборного железобетона экономию

стали получают при сварке сеток и каркасов на автоматических линиях с

продольной и поперечной подачей стержней из бухт, при расширении всех видов

контактной сварки, безотходной стыковке стержней, в том числе разных

диаметров, изготовлении закладных деталей методом штамповки.

Существенная экономия металла достигается при рациональном проектировании

и использовании стальных форм в промышленности сборного железобетона. На 1

м^3 железобетона в год на металлические формы затрачивается 6—35 кг стали.

Для интенсификации использования форм необходимо ускорение их

оборачиваемости в технолегияеском потоке.

Освоение бетона высоких марок — еще один важный резерв снижения расхода

металла при производстве железобетона. Повышение марки бетона на одну

ступень снижает расход стали примерно на 50 кг/м^3.

При изготовлении металлических конструкций эффективно применение

легированных сталей, экономичных профилей металлопроката. Применение

трубчатых профилей в строительных конструкциях по сравнению с уголковыми

В строительстве все большее значение приобретает проблема экономного

расходования лесоматериалов. Прогрессивной тенденцией является максимальное

использование вместо древесины местных строительных материалов, а также

арболита, фибролита, древесно-стружечных, древесно-волокнистых плит и др.

На современных передовых деревообрабатывающих и лесопильных предприятиях

предусматривается максимальная утилизация отходов производства. Для несущих

и ограждающих конструкций особенно в условиях агрессивной среды рационально

применение клееной древесины. Применение деревянных клееных конструкций в

сельскохозяйственных производственных зданиях позволяет в 2—3 раза снизить

расход стали и вес зданий. Существенного снижения материалоемкости можно

добиться совершенствованием конструктивных решений клееных конструкций,

использованием для них элементов из водостойкой фанеры. Применение фанеры

позволяет сократить расход древесины на 20—40%, уменьшить потребность в

РАСХОД УСЛОВНОГО ТОПЛИВА НА ПРОИЗВОДСТВО ОСНОВНЫХ ВИДОВ СТРОИТЕЛЬНЫХ

|Вид материала и изделий |Расход топлива. кг (в условном |

| |исчислении на 1 т продукции) |

|Керамические камни и | |

|глиняный кирпич |50—80 |

|Известь, цемент |115-240 |

|Керамические плитки для |200—610 |

|полов |360—1058 |

|Облицовочные глазурованные |510-590 |

|плитки |500—800 |

|Стекло листовое |200—270 |

|Санитарно-строительный | |

|фаянс | |

|Керамзит | |

СНИЖЕНИЕ РАСХОДА ЦЕМЕН ТА ПРИ ВВЕДЕНИИ УКРУПНЯЮЩИХ ДОБАВОК

|Вид и модуль крупности |Среднее снижение расхода цемента при |

|(М) укрупняющих добмок |обогащении природного песка с модулем |

| |крупности |

| | | |

| |1,5-2 |1—1,2 |

|Песок природный средний,| | |

| |5 |5 |

|Мк=2,1—2,5 | | |

|Песок природный крупный,| | |

| |15 |12 |

|Мк=2,6-3,25 | | |

|Каменный отсев | | |

|классифицированный, Мк =|20 |15 |

|3—3,5 | | |

|0тходы | | |

|горно-обогатительных |8 |7 |

|комбинатов | | |

|классифицированные, Мк= | | |

|2,5-3 | | |

|Шлаки ТЭЦ, Мк=2,5-3,5 | | |

| |5 |5 |

|Гранулированные шлаки | | |

| |5 |5 |

ОТНОСИТЕЛЬНЫЙ РАСХОД ЦЕМЕНТА (%) В БЕТОНЕ ПРИ ИЗМЕНЕНИИ НОРМАЛЬНОЙ ГУСТОТЫ

|Нормальная |Огносительныи расход |Нормальная|Относительный расход|

|густота |цемента, %, для |густота |цемента, % , для |

|цемента, % |бетона марок |цемента, %|бетона марок |

| |М200—М300 |М400|М50| |М200—М300|М40| М500|

| | | |0 | | |0 | |

| | | | | | | | |

|24 |98 |98 |98 |28 |104 |109|111 |

|25 |100 |100 |100|29 |105 | |115 |

|26 |102 |102 | |30 |107 |112|129 |

|27 |103 | |103| | | | |

| | |105 | | | |118| |

| | | |107| | | | |

ЭКОНОМИЯ МЕТАЛЛА ПРИ ИСПОЛЬЗОВАНИИ СТЕРЖНЕВОЙ АРМАТУРЫ РАЗЛИЧНЫХ КЛАССОВ

|Класс |Коэффициен|Экономия |Класс |Коэффициен|Экономия |

|арматуры|т |металла, |арматуры |т |металла, % |

| |приведения|% | |приведения| |

| | | | | | |

|А-I |1 |О |A-V |2,2 |54,7 |

|А-II |1,21 |17 |Ат-IV |1,95 |48,7 |

|А-III |1,43 |30,1 |Ат-V |2,2 |54,7 |

|A-IV |1,95 |48,7 |Ат-VI |2,4 |58,4 |

1. Г.И. Горчаков, Строительные материалы, Москва, 1986

2. М.В. Дараган, Сокращение потерь материалов в строительстве,Киев,

3. А.Г. Домокеев, Строительные материалы, Москва, 1989

4. А.Г. Комар, Строительные материалы и изделия, Москва, 1988

theoldtree.ru

Технологии экономии цемента

Цемент - один из наиболее широко применяемых, важных и дефицитных строительных материалов, и хотя в нашей стране ежегодно выпускается достаточное количество цемента, его нехватка постоянно ощущается. Причина не только в том, что масштабы строительства огромны - в большей степени дефицит цемента зависит от его излишнего расхода при приготовление бетонов и растворов, от сверхнормативных его потерь при транспортировке и хранении.

Одна из главных причин перерасхода цемента - необеспеченность высококачественными заполнителями и потеря им активности при неудовлетворительном хранении. Высокоактивные цементы при хранении в открытом виде (не в герметичной таре) быстро вступают в реакцию с содержащейся в воздухе влагой, в результате чего их марка снижается..

Неудовлетворенно обстоит дело и с транспортированием цемента. Перевозка цемента в крытых вагонах, навалом приводит при его разгрузке и перегрузке к значительным потерям. К тому времени, когда цемент дойдет до смесителя, потери его превышают нормативные (равные 1%)в несколько раз.

Специалисты считают, что можно сократить расход цемента (и при этом повысить качество и долговечность конструкций), если приготовлять бетон из чистых фракционированных заполнителей. Организация производства таких заполнителей потребует значительных капиталовложений, но для народного хозяйства это значительно выгоднее по сравнению с затратами на ремонты и замену железобетонных конструкций, часто выходящих из строя значительно раньше сроков, на которые рассчитана их эксплуатация. В зарубежной строительной практике ни одна фирма не производит бетон на заполнителях одной фракции 5-20 мм. Например, в Финляндии он готовится на четырех фракциях чистого крупного заполнителя и двух фракциях мелкого. При этом однородность выпускаемого бетона настолько высока, что его прочность определяется по испытанию одного образца: фирма, производящая бетон, гарантирует его марочную прочность.

Мощным средством экономии цемента являются химические добавки, и в первую очередь пластификаторы. До недавнего времени в нашей стране в качестве пластифицирующих добавок применялись разного рода отходя промышленности. Как правило, эффект от действия таких добавок был невысок, их химический состав часто не стабилен. Отечественная промышленность специально для бетонов начала выпускать эффективную пластифицирующую добавку - суперпластификатор С-3,котороая по своему действию не уступает лучшим зарубежным образцам аналогичного класса, а по стоимости в 5-6 раз дешевле. При введении в бетон этой добавки можно сэкономить до 20% цемента (при неизменной пластичности бетонной смеси). Не снижая расход цемента и не увеличивая пластичности бетонной смеси, но, снизив ее водоцементное соотношение, можно повысить прочность бетона на 20-25%.

Эффективность цемента можно повысить (а, следовательно, снизить его расход), увеличив тонкость его помола. На предприятиях сборного железобетона для того, чтобы бетон как можно скорее достиг распалубочной прочности, часто идут на завышение марки бетона путем увеличения расхода цемента. Можно избежать этого, если использовать вяжущее более тонкого помола: на таком вяжущем твердение бетона в раннем возрасте производит быстрее. Можно сэкономить цемент и другим путем: ввести в цемент песок, известняк или какой-либо другой наполнитель и с ним осуществить помол цемента. Однако, как показывают исследования, при этом марка вяжущего снижается, хотя и не совсем в прямой пропорции от количества введенного заполнителя. Для получения бетона марок до 200 и даже выше такое вяжущее вполне приемлемо. В зависимости от количества введенного заполнителя (30-50%)можно сэкономить до 50% цемента. Эффект может еще большим если применить суперпластификаторы.

Определенные резервы уменьшения расхода цемента имеются в раздельной технологии приготовления бетонной смеси. Хотя этот метод давно известен, однако до сих пор не нашел применения в технологии бетона. Для получения желаемого эффекта прежде всего, необходимы высокоскоростные смесители емкостью, соответствующей количеству раствора, необходимого на один замес бетонной смеси в обычном смесителе.

В Японии раздельный метод приготовления бетона применяется с успехом. Компактный турбулентный смеситель, необходимый для такого метода, смонтирован там непосредственно на основном бетоносмесителе, и их производительность полностью увязана между собой.

Отмечается, что один из больных вопросов проблемы экономии цемента - его потери при транспортировании хранении, значительно превышающие нормативные. Нельзя допускать доставку цемента в вагонах навалом, разгружать его вручную, хранить навалом под навесами и в сараях, транспортировать с большим количеством перегрузок с одного вида транспорта на другой. Особенно велики потери цемента при доставке в районы, где нет железных дорог и его приходится перегружать с железнодорожного транспорта на речной, а затем на автотранспорт. Этого можно избежать, если в такие районы доставлять не цемент, а цементный клинкер, качество которого не теряется при транспортировании и хранении. На месте его можно помолоть и всегда иметь свежий цемент высокой активности.

Имеются и другие пути экономии цемента - применение высококачественных форм для контрольных образцов, учет последующего нарастания прочности бетона рациональные подборы составов бетонов и растворов, применение автоматических устройств по дозированию составляющих и т.д. Если все это внедрить в производство и правильно использовать, проблема дефицита цемента была бы снята, так как это дало бы дополнительно не менее 30% цемента от производимого его объема.

www.apxu.ru

Пути экономии строительных материалов

                           Министерство образования Украины

Киевский государственный  университет строительства  и архитектуры

                                 кафедра строительных материалов  

            Реферат

              на тему: ’’Пути экономии строительных материалов”

                                                                                   Написал: студент ПГС-27

                                                                                                      Иваненко А.В.

                                                                                   Проверил:   ст.  препод.

                                                                                                      Анисимов А.Б.

                                                                  Киев - 1996

                   Вступление

 В этом реферате приведены основные направления снижения энергетических затрат при производстве стали,  цемента, сборного железобетона. Также описаны: основные источники потерь цемента при его производстве, транспортировке, применении; эффективные направления снижения расхода металла в железобетонных конструкциях; проблемы экономного расходования лесоматериалов. 

 При изготовлении большинства строительных матери­алов основная часть затрат падает на сырье и топливо. На производство строительных материалов и конструк­ций ежегодно расходуется около 50 млн. т условного топлива. В табл. 1 приведен расход условного топли­ва на производство основных видов неметаллических строительных материалов и изделий. Наибольшая доля затрат на топливо характерна для себестоимости метал­лов, цемента, пористых заполнителей, керамических сте­новых материалов, стекла.

 Экономия топлива достигается интенсификацией теп­ловых процессов и совершенствованием тепловых агрега­тов, снижением влажности сырьевых материалов, приме­нением вторичного сырья, промышленных отходов и дру­гих технологических приемов. При производстве стали наиболее эффективной в тепловом отношении является кислородно-конвертерная плавка, основанная на продув­ке жидкого чугуна кислородом. Коэффициент использо­вания теплоты в кислородных конверторах достигает 70%, что намного выше, чем в других сталеплавильных агрегатах. Применение кислорода позволяет уменьшить на 5—10 % расход топлива и при мартеновском способе. Более полно используется теплота отходящих газов в двухванных мартеновских печах. Прогрессивным спосо­бом является получение стали прямым восстановлением из руд, минуя доменный процесс. При этом способе от­падают затраты на коксохимическое производство, явля­ющееся основным при доменном процессе.

В цементной промышленности снижение затрат топ­лива достигается обжигом клинкера по сухому способу, получением многокомпонентных цементов, применением .минерализаторов при обжиге клинкера и различных ти­пов теплообменных устройств, обезвоживанием шлама, низкотемпературной технологией, полной или частичной заменой глины такими промышленными отходами, как золы, шлаки и др. Один из главных резервов снижения расхода топлива в производстве цемента — уменьшение влажности шлама. Каждый процент снижения влажности шлама позволяет уменьшить удельный расход топлива на обжиг клинкера в среднем на 117—146 кДж/кг, т. е. на 1,7—2 %. Удельный расход теплоты на обжиг при су­хом способе составляет 2900—3750 кДж/кг клинкера, а при мокром в 2—3 раза больше. При введении в сырье­вой шлам доменных шлаков или зол ТЭС расход топли­ва снижается на 15—18%. При выпуске шлакопортланд-цемента экономия топлива дополнительно составляет в среднем 30—40 % по сравнению с чистоклинкерным портландцементом.

В нашей стране разработана технология низкотемпе­ратурного синтеза клинкера с использованием в качест­ве каталитической среды хлористого кальция. Эта техно­логия обеспечивает снижение затрат теплоты на обжиг и помол клинкера на 35—40 % и такое же повышение про­изводительности печей.

К энергоемким отраслям промышленности строи­тельных материалов относится и производство сборного железобетона. На 1 м^3 сборного железобетона в среднем расходуется более 90 кг условного топлива. До 70 % теп­лоты идет на тепловую обработку изделий. Тепловую эффективность производства сборного железобетона можно существенно повысить, снизив тепловые потери, связанные с неудовлетворительным состоянием пропа­рочных камер, тепловых сетей, запорной арматуры и средств контроля расхода пара.

 Непроизводительные потери теплоты уменьшаются при повышении теплового сопротивления пропарочных камер с помощью различных теплоизоляционных мате­риалов и легких бетонов. Более экономичными по срав­нению с наиболее распространенными явными пропарочными камерами являются   вертикальные,   туннельные, щелевые, малонанорные камеры. В последних, например, расход пара на 30—40 % ниже, чем в ямных.

 Наряду с уменьшением тепловых потерь важнейшее значение для эко­номии топливно-энергети­ческих ресурсов в произ­водстве сборного железо­бетона приобретает раз­витие энергосберегающих технологий: применение высокопрочных и быстротвердеющих   цемситов, введение химических до­бавок, снижение температуры и продолжительности нагрева, нагрев бетона электричеством и в среде продуктов сгорания природного газа и др. Ус­корению тепловой обра­ботки способствуют спо­собы формования, обеспе­чивающие применение бо­лее жестких смесей и повышение плотности бетона, ис­пользование горячих смесей, совмещение интенсивных механических и тепловых воздействий на бетон. Ускоре­ние тепловой обработки достигается при изготовлении конструкций из высокопрочных бетонов. Длительность тепловой обработки бетонов марок М 600—М 800 мож­но снизить с 13 до 9—10 ч без перерасхода цемента. Эф­фективной технологией ускоренного твердения является бескамерный способ, основанный на создании искусст­венного массива бетона пакетированием. Перспективны способы тепловой обработки бетона в электромагнитном поле и с применением инфракрасных лучей. В южных районах страны удельные затраты теплоты на ускорение твердения бетона можно существенно снизить, исполь­зуя солнечную энергию.

В производстве керамических стеновых материалов и пористых заполнителей эффективным направлением эко­номии кондиционного топлива является применение топливосодержащих  отходов промышленности. Так, приме­нение в качестве топливосодержащей добавки отходов углеобогащения позволяет экономить при получении сте­новых керамических изделий до 30 % топлива, исключа­ет необходимость введения в шихту каменного угля.

Наряду с экономией топлива снижение материалоемкости  строительных изделий в большой мере достигает­ся рациональным использованием исходных компонен­тов и в особенности таких, как цемент, сталь, древеси­на, асбест и др. Экономия этих материалов достигается на всех этапах их производства и применения.

 Основным источником потерь цемента при его про­изводстве является вынос в результате несовершенства пылеулавливающих устройств помольных агрегатов. Пе­ревозка цемента должна осуществляться в специализи­рованных транспортных средствах. При транспортировании  в цементовозах потери цемента при погрузочно-раз­грузочных работах в среднем в 10 раз меньше, чем в крытых вагонах, в 40 раз меньше, чем в открытом под­вижном составе. Одна из причин перерасхода — смеши­вание используемых цементов различных марок и видов при отсутствии достаточного количества емкостей для их хранения. В этих случаях вынужденно применяют рас­ходные нормы для худшего из смешанных цементов, что приводит к их перерасходу на 6—8 %. Важное значение имеет применение кондиционных заполнителей бетона. Каждый процент загрязненности щебня равнозначен до­полнительному расходу примерно 1 % цемента. В табл.2  приведено возможное снижение расхода цемента при обогащении мелкозернистых песков укрупняющими добавками.

Нерационально применение цемента марки 400 для изготовления бетонов марок М 100 и М 150, а также растворов марок 50 и 75. В этих случаях значительное снижение расхода цемента можно достичь введением в бетонные и растворные смеси минеральных дисперсных добавок, например, золы-уноса ТЭЦ.

Большое значение для экономного использования це­мента имеет обоснованный выбор области наиболее эф­фективного применения цемента с учетом его минерало­гического состава и физико-механических характеристик. Например, для сборного железобетона, подвергаемого тепловой обработке, наиболее пригодны цементы с содер­жанием СзА до 8%. Расход цемента увеличивается по мере роста его нормальной густоты (табл.3), поэто­му желательно его применение с минимальной нормаль­ной густотой.

На предприятиях по производству бетона и сборного железобетона значительная экономия цемента может быть достигнута при оптимизации составов бетонов, при­менением смесей повышенной жесткости с уплотнением на резонансных и ударных виброплощадках, предвари­тельным разогревом бетонных смесей и выдерживанием изделий после тепловой обработки, увеличением продол­жительности тепловой обработки, расширением объема изготовления конструкций с минусовыми допусками, со­вершенствованием технологического оборудования и кон­трольно-измерительной аппаратуры.

 Одно из наиболее перспективных направлений сни­жения расхода цемента — применение химических доба­вок. Такие традиционные химические добавки, как СДБ, позволяют снижать расход цемента на 5—10%. Возможное снижение расхода цемента при применении но­вейших  добавок суперпластификаторов составляет 15-25'%.Дополнительный источник экономии цемента при высоком качестве бетона — применение статистиче­ского контроля прочности. Назначение требуемой проч­ности бетона с учетом его однородности обеспечивает при повышенной культуре производства снижение расхо­да цемента на 5—10 %.

 Экономия металла — важнейшая  народнохозяйственная  задача. В настоящее время в строительстве ежегодно используется 31—33 млн. т. черных металлов, из которых  12—13 млн. т. расходуется на арматуру для желе­зобетонных конструкций, около 8 млн. т. на фасонный и листовой прокат для изготовления металлоконструкций и опалубочных форм и 11—12 млн. т. на трубы.

 Самое эффективное направление снижения расхода металла в железобетоне—применение для арматуры вы-сокопрочной стали. Арматурная сталь разных классов и видов является в известных пределах взаимозаменяемой. Количество стали любого класса (Т) может быть выра­жено в условно эквивалентном по прочности приведен­ном количестве стали класса А - I (Т')

                                              (А)

               где Кпр—коэффициент приведения стали данного класса к стали класса А-1.

В табл.4 приведены значения коэффициента при­ведения и экономии металла при использовании арма­турной стали различных классов.

Значительный резерв по экономии металла обеспечи­вается при изготовлении напряженной арматуры из высоко прочной  проволоки и канатов. Экономия металла достигается также при более точных расчетах конструк­ций в соответствии с действительными условиями их ра­боты под нагрузкой, приближением армирования к тре­бованиям расчета, оптимизацией конструктивных реше­ний.

 При изготовлении арматурных изделий для сборного железобетона экономию стали получают при сварке се­ток и каркасов на автоматических линиях с продольной и поперечной подачей стержней из бухт, при расширении всех видов контактной сварки, безотходной стыковке стержней, в том числе разных диаметров, изготовлении закладных деталей методом штамповки.

Существенная экономия металла достигается при ра­циональном проектировании и использовании стальных форм в промышленности сборного железобетона. На 1 м^3 железобетона в год на металлические формы затрачива­ется 6—35 кг стали. Для интенсификации использования форм необходимо ускорение их оборачиваемости в технолегияеском  потоке.

Освоение бетона высоких марок — еще один важный резерв снижения расхода металла при производстве же­лезобетона. Повышение марки бетона на одну ступень снижает расход стали примерно на 50 кг/м^3.

 При изготовлении металлических конструкций эффек­тивно применение легированных сталей, экономичных профилей металлопроката. Применение трубчатых про­филей в строительных конструкциях по сравнению с уголковыми дает экономию до 30 %.

В строительстве все большее значение приобретает проблема экономного  расходования лесоматериалов. Прогрессивной тенденцией является максимальное использование  вместо древесины местных строительных материалов, а также арболита, фибролита, древесно-стру­жечных, древесно-волокнистых плит и др. На современ­ных передовых деревообрабатывающих и лесопильных предприятиях предусматривается максимальная утили­зация отходов производства. Для несущих и ограждаю­щих конструкций особенно в условиях агрессивной среды рационально применение клееной древесины. Примене­ние деревянных клееных конструкций в сельскохозяйст­венных производственных зданиях позволяет в 2—3 ра­за снизить расход стали и вес зданий. Существенного снижения материалоемкости можно добиться совершен­ствованием конструктивных решений клееных конструк­ций, использованием для них элементов из водостойкой фанеры. Применение фанеры позволяет сократить рас­ход древесины на 20—40%, уменьшить потребность в клее в 1,5—2,5 раза.

ТАБЛИЦА 1.

РАСХОД УСЛОВНОГО ТОПЛИВА НА ПРОИЗВОДСТВО ОСНОВНЫХ ВИДОВ     СТРОИТЕЛЬНЫХ МАТЕРИАЛОВ И ИЗДЕЛИЯ.

Вид материала и изделий

Расход топлива. кг (в условном исчислении на 1 т продукции)

Керамические камни и глиняный кирпич

Известь, цемент

Керамические плитки для полов

Облицовочные глазурованные плитки

Стекло листовое

Санитарно-строительный фаянс

Керамзит

                                           50—80

                                           115-240

                                            200—610

                                           360—1058

                                           510-590

                                           500—800

200—270

ТАБЛИЦА 2.

СНИЖЕНИЕ РАСХОДА ЦЕМЕН ТА ПРИ ВВЕДЕНИИ УКРУПНЯЮЩИХ ДОБАВОК

Вид и модуль крупности (М) укрупняющих добмок

Среднее сни­жение расхода цемента при обогащении природного песка с модулем круп­ности

                        1,5-2

                     1—1,2

Песок природный средний,

Мк=2,1—2,5

                           5

                        5

Песок природный крупный,

Мк=2,6-3,25

                          15

                       12

Каменный отсев классифицирован­ный, Мк = 3—3,5

                          20

                       15

0тходы горно-обогатительных комбинатов классифицированные, Мк= 2,5-3

                           8

                         7

Шлаки ТЭЦ, Мк=2,5-3,5

                           5

                         5

Гранулированные шлаки

                           5

                         5

ТАБЛИЦА 3.

ОТНОСИТЕЛЬНЫЙ РАСХОД ЦЕМЕНТА (%) В БЕТОНЕ ПРИ ИЗМЕНЕНИИ НОРМАЛЬНОЙ ГУСТОТЫ ЦЕМЕНТА

Нормаль­ная гус­тота цемента, %

Огносительныи расход цемента, %, для бетона марок

Нормаль­ная гус­тота цемента, %

Относительный расход цемента, % ,  для бетона марок

М200—М300

М400

М500

М200—М300

М400

  М500

          24

          25

          26

          27

           98

          100

          102

          103

    98

    100

    102

    105

  98

  100

  103

  107

           28

           29

           30

          104

          105

          107

  109

  112

  118                                          

    111

    115

    129

ТАБЛИЦА 4.

ЭКОНОМИЯ МЕТАЛЛА ПРИ ИСПОЛЬЗОВАНИИ СТЕРЖНЕВОЙ АРМАТУРЫ РАЗЛИЧНЫХ КЛАССОВ

Класс арматуры

Коэффициент приведения

Экономия металла, %

Класс арматуры

Коэффициент приведения

Экономия ìåòàëëà, %

       А-I

       А-II

       А-III

       A-IV

          1

          1,21

          1,43

          1,95

         О

         17

         30,1

         48,7

        A-V

        Ат-IV

        Ат-V

        Ат-VI

         2,2

         1,95

         2,2

         2,4

              54,7

              48,7

              54,7

              58,4

 Список использованной литературы:

1.  Г.И. Горчаков, Строительные материалы, Москва, 1986

2. М.В. Дараган, Сокращение потерь материалов в строительстве,Киев,

                                                                                                                       1988

3. А.Г. Домокеев, Строительные материалы, Москва, 1989

4. А.Г. Комар, Строительные материалы и изделия, Москва, 1988

diplomba.ru

ТЕХНОЛОГИИ ЭКОНОМИИ ЦЕМЕНТА

Цемент является одним из самых широко применяемых, значимых и дефицитных стройматериалов, и хоть в России каждый год производится достаточный объём цементной продукции, каждый раз многие предприятия испытывают в ней дефицит.  Это происходит не только из-за того, что строительные масштабы велики – в наибольшей степени нехватка цементной продукции будет зависеть от её избыточного расхода в процессе изготовления бетонов и растворов, от его потерь сверх нормы при перевозке и хранении. Одной их главных причин перерасхода цементной продукции является отсутствие заполнителей высокого качества, а также потеря их активности при ненадлежащем хранении. Цемент повышенной активности при хранении в открытом виде быстро входят в реакцию с имеющейся в воздухе влагой, вот из-за чего его марка понижается. Транспортировка цемента в укрытых вагонах, навалом влечёт за собой большие потери при разгрузке и перегрузке. Как только цементная продукция доставлена до смесителя, потери его выше нормативных (составляющие один процент) в несколько раз. Строители полагают, что реально уменьшить расходы цементной продукции, изготовив бетон из очищенных фракционированных заполнителей. Создание производства данных заполнителей затребует больших денежных вложений, однако для экономики страны это довольно выгодное в сравнении с расходами на ремонтные работы и замену ЖБК, которые довольно часто ломаются и не редко это происходит задолго до истечения эксплуатационного срока. В строительной практике за границей ни одна компания не изготавливает бетон на заполнителях одной фракции пять-двадцать миллиметров. К примеру, специалисты Финляндии готовят на 4-х фракциях очищенного крупного заполнителя и 2-х фракциях мелкого. Вместе с этим однородность производимого бетона так значительна, что его прочность устанавливается по пробе одного образца: компания, которая выпускает бетон, даёт гарантию на его марочную прочность. Существенной экономии цементной продукции можно достичь при помощи химических добавок, и первым делом это пластификаторы. Совсем недавно в Российской Федерации пластифицирующими добавками были отходы промышленности. Обычно, эффективность данных добавок не высока, их хим. состав часто изменчив. Российская промышленность специально для бетонов начала производить действенную пластифицирующую добавку – суперпластификатор С-3,по своему действию не уступающая наилучшим иностранным образцам того же класса, а цена в пять-шесть раз ниже. При включении в бетон данной добавки экономия достигает двадцати процентов цементной продукции. Не уменьшая затраты цементной продукции и не повышая пластичности смеси, однако, понизив ее соотношение воды и цемента, можно сделать бетон прочнее на двадцать-двадцать пять процентов. Результативность цементной продукции можно увеличить, это означает, что можно уменьшить её расход, сделав более тонким её помол. На заводах сборного железобетона для скорейшего достижения бетоном распалубочной прочности, не редко идут на завышение марки бетона за счёт повышения  расхода цементной продукции. Этого можно избежать, если применять вяжущее наиболее тонкого помола: на таком вяжущем твердение бетона в раннем возрасте производит быстрее. Расход цементной продукции можно сократить и другим способом: добавить в цемент песок, известняк или иной наполнитель и с ним выполнять помол цемента. Тем не менее, как показали исследования, марка вяжущего понижается, хотя и не совсем в прямой пропорции от объёма добавленного заполнителя. Для изготовления бетона марок до двухсот и даже выше такое вяжущее вполне подходит. В зависимости от объёма добавленного заполнителя (тридцать-пятьдесят процентов) добиться экономии до пятидесяти процентов цементной продукции. Можно достичь большего эффекта используя суперпластификаторы. Некоторые резервы снижения расхода цементной продукции существуют в раздельной технологии изготовлении смеси. Хотя этот способ давно используется, тем не менее, в настоящее время его не применяют в технологии бетона. Для получения нужного результата первым делом, нужного на один замес смеси в простом смесителе. В Японии раздельный способ изготовления смеси используется довольно широко. Компактность турбулентного смесителя, который необходим для данного способа, установлен  прямо на основном бетоносмесителе, и их производительность полностью связана между собой. Следует отметить, что один из часто задаваемых вопросов проблемы как всё же сэкономить цементную продукцию – его утраты при перевозке и хранении, существенно выше нормативных. Не следует допускать доставку цементной продукции в вагонах навалом, разгружать его вручную, хранить навалом под навесами и в сараях, перевозить с многочисленными перегрузками с одного вида транспорта на другой. В особенности потери цементной продукции увеличиваются при доставке в районы, где не имеется ж\д и её приходится перегружать с ж\д транспорта на речной, а потом на автомобильный транспорт. Можно обойтись и без всего этого, поставляя в данные районы не цемент, а клинкер, который не снижает своего качества при перевозке и хранении. Его можно помолоть в конечной точке и получить высокоактивный свежий цемент. Есть и другие выходы из сложной ситуации – это использование форм высокого качества для контрольных образцов, учет последующего увеличения прочности бетона, целесообразные подборы входящих компонентов бетонов и растворов, применение автоустройств по дозированию составляющих и так далее. Если все это внедрить в производство и правильно использовать, проблема дефицита цемента была бы снята, так как это дало бы дополнительно не менее 30% цемента от производимого его объема.

www.beton17.ru


Смотрите также